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What is Artificial Intelligence (AI)?

e Al is wide-ranging branch of
computer science concerned with
building smart machines capable of
performing tasks that typically
require human intelligence.

« Al1is an interdisciplinary science with
multiple approaches, but _
advancements in machine iR~
learning (ML) and deep learning -
(DL) are creating a paradigm shift in e
virtually every sector of the tech N
industry.
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Alv.s. ML v.s. DL

Al: Engineering of making intelligent

machines and programs

DL: Set of algorithm to model
high-level of abstraction

ML: Ability to learn without being

explicitly programmed
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UC San Diego

What is Machine/Computer Vision (M/CV)?

« Machine Vision or Computer
Vision is an interdisciplinary
scientific field that deals with
how computers can gain high-
level understanding from digital
images or videos.

cV ,

« Difference between CV and Image
Processing (IP)?

In IP, an image is "processed”,
namely, transformations are applied
to an input image and an output
image is obtained.

IP
Image g Image

7
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Alv.s. MLv.s. DLv.s. CVv.s. IP
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Alv.s. MLv.s. DLv.s. CVv.s. IP

- My talk today
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Autonomous Vehicle

« An autonomous vehicle, also known as a robotic vehicle, self-driving
vehicle, or driver-less vehicle, is a vehicle that is capable of sensing its
environment and moving with little or no human input.

10
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Which company is developing Autonomous Vehicles?

‘ SID  pait=m @ ©) BOSCH DAE

DeLPHI &P @ Google ﬂﬁﬂ & veco

HONDA HYUNDAI

NVIDIA.
ITPOBILEVE

RENAULT

B OO

Volkswagen

1
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SAE Levels of Driving Automation

UC San Diego

® o ® @ @
o €2 &2 (OB FA

0

No
Automation

Zero autonomy; the
driver performs all
driving tasks.

1

Driver
Assistance

Vehicle is controlled by
the driver, but some
driving assist features
may be included in the
vehicle design.

p

Partial
Automation

Vehicle has combined
automated functions,
like acceleration and
steering, but the driver
must remain engaged
with the driving task and
monitor the environment
at all times.

3 4
Conditional High
Automation Automation

Driver is a necessity, but
is not required to monitor
the environment. The
driver must be ready to

The vehicle is capable of
performing all driving
functions under certain
conditions. The driver

take control of the may have the option to
vehicle at all times control the vehicle.
with notice.

o
A

5

Full
Automation

The vehicle is capable of
performing all driving
functions under all
conditions. The driver
may have the option to
control the vehicle.

12
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Autonomous Driving System

Localization & Prediction &
Mapping Planning

' : Communication
Car Sensors : Car Chassis Other Autonomous Cars

Perception

i Autonomous Car
System

e The autonomous driving system consists of two main
components: 1) hardware (HW) and 2) software (SW).

» HW: Car Sensors and Car Chassis.

« SW: 1) Perception, 2) Localization & Mapping, 3) Prediction
and Path Planning ; and 4) Control.
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Autonomous Driving System

Localization & Prediction &
Mapping Planning
Communication
Car Chassis Other Autonomous Cars

i Autonomous Car

System
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Autonomous Vehicle Applications

https://www.youtube.com/watch?v=0rc4RqYLtEU 15
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2,  Semantic Driving Scene Understanding
3. Object Detection/Recognition/Tracking

16
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2. Semantic Driving Scene Understanding

) 1 (Jf ' % [\ AL A f f ~\ ¥ ap 3 ;{?‘&EN‘; el I ]
« Vhioet otortinn /T o ﬁ n

D L = s N AT oL ‘\A'_,,a‘_i >C ( ﬁé« ﬁ 1 " 1 9.}”_,1!,: | :ﬁ/i.{ 1
L) &

Stereo Camera

Smcrle Camera

UC San Diego

: Siﬁgle Camera
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2.  Semantic Driving Scene Understanding
3. Object Detection/Recognition/Tracking

[ 1.1. Traditional Dense Stereo
1.2. Self-Supervised Dense Stereo
1.3. Unsupervised Optical Flow Estimation

18
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2. Semantic Driving Scene Understanding

3. Object Detection/Recognition/Tracking

19
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2. Semantic Driving Scene Understanding
3. Object Detection/Recognition/Tracking

2.1. Freespace Detection
2.2, Road Defect/Anomaly Detection

20
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Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2.  Semantic Driving Scene Understanding
3. Object Detection/Recognition/Tracking

traffic

sign

e L

Avehicle

21
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Rui Ranger Fan
Autonomous Driving Perception Tasks

1. 3D Geometry Model Reconstruction
2.  Semantic Driving Scene Understanding
3. Object Detection/Recognition/Tracking

I 3.1. Intelligent Collaboration Among Air-Ground Robots for
Parking Violation Detection
3.2. Lane Marking Detection

22



Rui Ranger Fan UC San Diego
Keynote Talk Outline

1. Introduction

2. 3D Geometry Model Reconstruction
3. Semantic Driving Scene Understanding
4. Object Detection/Recognition

5. Conclusion
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3D Geometry Model Reconstruction

2D images

€7\ 1
$ e TR

.
| |
. . . -~ ’
" a 5 . - -~ i
r 2 . - 2K "
A -2
-
. ¥
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3D Geometry Model Reconstruction

captured from
different views

i W 2D 1mages
EREGC ot Wl
e A

., .
o

|

o~
S -
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3D Geometry Model Reconstruction

* The geometry of a given 3D model can be reconstructed using either an
array of synchronized cameras (stereo vision) or a single
movable camera (structure from motion, or optical flow).

Real Scene Reconstructed Scene

F=

Stereo Camera TR
"= Single Camera
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Stereo Vision

3D scene geometry
reconstruction with a pair of
synchronized cameras is based
on determining pairs of
correspondence pixels between
the left and right images.

Epipolar
Plane

For an uncalibrated stereo rig,
finding the correspondence , ,
pairs is a 2D search process Epipolar Lincs
( R, t

), which is
extremely computationally
Iintensive. 27

Epipolar geometry
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Stereo Vision

« Ifthe stereo rig is calibrated,
1D search should be
performed along the
epipolar lines.

* An image transformation
process, referred to as
, 18

New Epipolar

Lines

always performed
beforehand to reduce the
dimension of the
correspondence pair search.

Stereo rectification ’e
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Stereo Vision

« Disparity is in inverse

proportion to depth:
fT.
d& Uy — UR — ZWC

» Using the camera intrinsic
matrix, we can obtain the 2D
pixel’s 3D location in the
World Coordinate System
(WCS).

Basic stereo vision system

29
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Traditional Dense Stereo
]

. | |
y / Subpixel Disparity Sibipizel Disparity Map Post-Processing and
- ransfc i rspective- M stimati Dispanty Mip Global Refinement 3D Reconstruction
.b o & ) Q7

Right Frame S
I I Right Frame I

« In 2018, we proposed a novel dense subpixel disparity estimation algorithm
[1] for dense road surface 3D reconstruction.

 The main contributions of this work include: ' ' perspective transformation,
subpixel disparity map estimation, and 3 ) disparity map global
refinement.

[1] Fan, R., Ai, X. and Dahnoun, N., 2018. Road surface 3D reconstruction based on dense
subpixel disparity map estimation. IEEE Trans on Image Processing, 27(6), pp.3025-3035.
30
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Traditional Dense Stereo

The perspective

transformation

algorithm : o

transforms the B D R . PR
target image into Omglnal left image Onglnal rlght Image

the reference view,
which enables better
stereo matching in
terms of both speed

and accuracy. Transformed 1eft image  Transformed rlght image

31
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Traditional Dense Stereo

The road disparities
decrease gradually from the
bottom to the top, while the
disparities of obstacles
remain the same.

Road disparity image example

Therefore, the disparities are
then estimated iteratively, o {
where the search range is
row v-/ {
propagated from three
es tlma te d ne 1 ghb 0 I'in g column #-/ column column u+/

Iterative disparity estimation strategy

disparities. .
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Traditional Dense Stereo

A novel disparity global
refinement approach
developed from the
Markov random fields
(MRF) and fast
bilateral stereo is e
introduced to further = ‘
improve the accuracy of - A |

the estimated disparity Left: RGB images
map. Right: disparity images

33
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Traditional Dense Stereo

Reconstructed Road Surface (mm)

Right Image

B 7 500

B s, ot et
-600

3D Point Cloud for Region of Interest (mm)
Final Left Disparity Map Left Disparity Map for Perspective-Transformed Input

900

800

\.‘_{/"/ -501
300 -600

https://www.youtube.com/watch?v=pypPI7fsctg

UCSan Diego

Reconstruction
accuracy: 3mm

Our paper is
downloadable!

K2
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Traditional Dense Stereo

This system was
improved and embedded

Real-Time Dense Stereo Embedded in on an NVIDIA Jetson
A UAV for Road Inspection

Rui1 Fan, Jianhao Jiao, Jie Pan,

Huaryang Huang, Shaojie Shen, Ming Liu

§ - R = ®
CVPR:¥& LonG BEACH B Ehans i R i
A CALIFORNIA UNIVERSITY OF SCIENCE B EERKE AR

=t June16-20, 2019 uMJ AND TECHNOLOGY ROBOTICS INSTITUTE HKUST

Our paper is
downloadable!

https://www.youtube.com/watch?v=_-YmlxojVMI&t=61s o0
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Self-Supervised Dense Stereo

The existing stereo matching approaches are classified as either
traditional or data-driven ones.

The former generally formulate stereo matching as block matching (local
methods) or energy minimization (global methods) problems.

The latter typically employ data-driven classification and/or regression
models, e.g., convolutional neural networks (CNNs), to learn a feasible
solution for stereo matching.

With recent advances in deep learning, many researchers have resorted
to deep CNNs (DCNNs) for stereo matching,

However, these approaches generally require a large amount of hand-
labeled training data to learn the best DCNN parameters.

36
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Self-Supervised Dense Stereo

- —_—
i Proposed Network

Stereo Iimage

Function

Dense Disparity Image

Disparity

75 100 125

F'rg a3
i I -

« We propose a novel approach for self-supervised stereo matching.
Specifically, we develop a module named Pyramid Voting Module (PVM),

which can be deployed in any existing supervised stereo matching DCNN,

converting it into a self-supervised approach.
37
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Self-Supervised Dense Stereo

The Demo of the KITTI Raw Data [1]

[1] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354-3361. IEEE, 2012.

UC San Diego

The state-of-the-
art self-
supervised
stereo algorithm.

Ranked the 3rd
on the KITTI
benchmark.

38
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Unsupervised Optical Flow Estimation

Optical flow describes the motion
of pixels between consecutive P

frames of a video sequence.

Optical flow is a 2-channel visual
information:

1st channel (/) ): horizontal
positional difference;

Epipolar

21’1d Channel (FV): Vertical .EpipolarLines
positional difference. R.t
Py = Tt Epipolar geometry
F, =k _ 1
39
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Unsupervised Optical Flow Estimation

« In 2020, we proposed CoT-AMFlow [2], an unsupervised optical flow
estimation approach.

» In terms of the network architecture, we develop an adaptive modulation
network to remove outliers in challenging regions.

» As for the training paradigm, we adopt a co-teaching strategy, where two
networks simultaneously teach each other about challenging regions to
further improve accuracy.

[2] Wang, H., Fan, R. and Liu, M., 2020. CoT-AMFlow: Adaptive modulation network with
co-teaching strategy for unsupervised optical flow estimation. CoRL 2020. (Acceptance rate:

34%)
40
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Unsupervised Optical Flow Estimation

» FMDMs refine the flow
imnitialization from

IR | | the preceding
Network 1 ! local ﬂOW
consistency.

* CMDMs explicitly
reduce outliers in the
cost volume using a

| flexible and efficient

Displacement Map D! Sparse pOth'baSed

scheme.

AMFlow for self-supervised optical flow estimation

41
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Unsupervised Optical Flow Estimation

Network A . Network B ‘
Tl?l!lf T:Jllj'f.

: | ] D Image
—]

D Optical Flow

Shared Shared

Weidl SR D Occlusion Map
AMFlow# e1ghts | :

O Loss

— Data Flow

— Image Transformation

—+ Flow Transformation

Occlusion Map
- Transformation in Our
Co-Teaching Strategy

" Occlusion Data Flow in
Our Co-Teaching Strategy

Co-Teaching Training Strategy
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UCSan Diego

Unsupervised Optical Flow Estimation

CoT-AMFlow:
Adaptive Modulation Network with Co-Teaching
Strategy for Unsupervised Optical Flow Estimation

Hengli Wang, Rui Fan, Ming Liu

https://sites.google.com/view/cot-amflow

. ﬁn;g H@N%fO%G Ri UC San Diego
umj UNIVERSITY OF SCIENCE B EERAE AT \Y

AND TECHNOLOGY ROBOTICS INSTITUTE HKUST JACOBS SCHOOL OF ENGINEERING

https://www.youtube.com/watch?v=LzL7QZhwFj
E&feature=youtu.be

CoT-AMFlow outperforms
all other unsupervised
methods on the MPI Sintel,
KITTI Flow 2012/2015 and
Middlebury Flow datasets.

Our paper is downloadable!
43
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Object Detection/Recognition

s

Conclusion
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Semantic Driving Scene Understanding

Semantic Segmentation CNNs can be categorized as two groups: 1)
single-modal and 2) data-fusion.

The former typically segments RGB images with an encoder-decoder
CNN architecture. In recent years, many popular single-model semantic
image segmentation algorithms, such as Fully Convolutional Network
(FCN), U-Net, SegNet, DeepLabvg+, DenseASPP, DUpsampling, etc.,
have been proposed.

Encoder-Decoder Pixel-wise
Image - - :
classification

45
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Semantic Driving Scene Understanding

« Data-fusion semantic image segmentation approaches generally learn
features from two different types of vision data, such as RGB and depth
images in FuseNet, RGB and surface normal image in SNE-RoadSeg, etc.

Encoder Decoder Pixel-wise
Image (modality 1) ’\ :

Image (modality 2)

Encoder

46
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Semantic Driving Scene Understanding

« Semantic segmentation: Objects shown in an image are grouped
based on defined categories.

« Instance segmentation: Consider instance segmentation a refined
version of semantic segmentation — instance segmentation detects the

instances of each category.

Semantic segmentation
i ‘ v.s.
) instance segmentation

R \\U ‘ |

Semantic Segmentation Instance Segmentation

47
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Freespace Detection

Freespace detection is an essential component of visual perception for
self-driving cars.

Freespace detection can be formatted as a binary semantic driving scene
segmentation problem.

Freespace detection approaches generally classify each pixel in an RGB
or depth/disparity image as drivable or undrivable.

Such pixel-level classification results are then utilized by other modules
in the autonomous system, such as trajectory prediction and path
planning, to ensure that the autonomous car can navigate safely in
complex environments.

48
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Freespace Detection

« In 2020, we proposed a novel freespace detection approach, referred to
as SNE-RoadSeg [3].

» It consist of 1) a novel module, named surface normal estimator (SNE), which
can infer surface normal information from dense depth/disparity images with
high accuracy and efficiency; and 2) a data-fusion CNN architecture, referred to
as RoadSeg, which can extract and fuse features from both RGB images and the
inferred surface normal information for accurate freespace detection.

|3] Fan, R., Wang, H., Cai, P. and Liu, M., 2020, August. SNE-RoadScg: Incorporating surface normal
information into semantic segmentation for accurate freespace detection. In ECCV (pp. 340-356).
Springer, Cham.

49
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Freespace Detection

* Our SNE module can efficiently produce a surface normal map from a
depth/disparity image in an end-to-end way. This module is developed
based on our previously proposed surface normal estimator, named

three-filters-to-normal (3F2N) [4].

. N Sl 4
Inverse Depth Convolution z
o ’ A
Depth Image 7 Image 1/7 - Mtz Volume \ Optimal Surface Normal 11

i il [nverse

Transpose

r! Estimation

Convolution N2 Volume ’

[4] Fan, R., Wang, H., Xue, B., Huang, H., Wang, Y., Liu, M. and Pitas, 1., 2020. Three-Filters-
to-Normal: An Accurate and Ultrafast Surface Normal Estimator. arXiv preprint
arXiv:2005.08165.

£ Estimation

50
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Freespace Detection

* RoadSeg incorporates both RGB and surface normal information into
semantic segmentation for accurate freespace detectlon

Depth Image RGB Imape i .1 Semantic Prediction

— __, Data Flow 21 Wise Summation | _ONCe
, ot = LJ

The n-th P Upsampling
Resicual Layer I Y ayer 174

I Convolution
|

RoadSeg Architecture 51
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Freespace Detection

SNE-RoadSeg: Incorporating Surface Normal
Information into Semantic Segmentation for
Accurate Freespace Detection

Rui Fan*, Hengli Wang*, Peide Cai, Ming Liu

sites.google.com/view/sne-roadseg

B FERRAE

: o= THE HONG KONG
Mgg LlNJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

https://www.youtube.com/watch?v=wWrZhDuh6xc

UCSan Diego

SNE-RoadSeg was
ranked the 2nd on
the KITTI road
benchmark.

Our paper is
downloadable!
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Freespace Detection

Input

(n-1)-th J

Enco th"l

(n-1)-th — (ﬁ —

AM Nt

L

n-th

n-th
Encoder

UC San Diego

Qutput
Segmentation

> Data flow

G Vet Output Layer

Decoder

Our paper is
downloadable!

Down-sampling
Up-sampling

Concatcnation

Incorporating attention modules can further improve the semantic

segmentation accuracy [5].

[5] Fan, R., Wang, H., Bocus, M.J. and Liu, M., 2020. We learn better road pothole detection:
from attention aggregation to adversarial domain adaptation. ECCV Workshop 2020. 53
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Freespace Detection

Semantic Prediction

suonejuasaiday] Suuiean

Ground Truth Generated Image

Using images captured from multiple views can also improve the accuracy of
freespace detection [6].

[6] Fan, R., Wang, H., Cai, P., Wu, J., Bocus, M.J., Qiao, L. and Liu, M., 2020. Learning
collision-free space detection from stereo images: Homography matrix brings better data

augmentation. IEEE Trans on Mechtronics (to be published).
54
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Road Defect/Anomaly Detection

« To ensure traffic safety, it is crucial and necessary to frequently inspect and
repair road potholes
« In 2019, we proposed a novel road pothole detection system [7].

Reconstructed 3D Road Surface Original Disparity Map Transformed Disparity Map

|- | Our paper is
—j’ Tran.\l’urmr;liuu £ I downloadable!

Undamaged Road
<«——— Pothole Detection A

Area Extraction

Disparity Map
- o -

Detected Pothole Point Clouds Maodeled Disparity Map Extracted Undamaged Road Area

[7] Fan, R., Ozgunalp, U., Hosking, B., Liu, M. and Pitas, I., 2019. Pothole detection based on
disparity transformation and road surface modeling. IEEE Trans on Image Processing. &5
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Road Defect/Anomaly Detection

y In IROS 2020) we alSO presented { Single-modal Architecture
a robust road defect anomaly

( Single-modal :!
detection algorithm [8], designed G :

. A I
Semantic Prediction,

Depth Image S

for mobile robots, such as
intelligent wheelchairs.

Data-fusion
. CNNs f(?r
e Such a road anomaly detection ‘ S
. i . 1 Segmentation e
algorithm can help navigation i ' Semantic Prediction,
System plan a Safe trajectory fOI‘ H Unlabelled M Drivable Area Road Anomaly {
the mobile robot. Single-modal and data-fusion road anomaly

detection

[8] Wang, H.*, Fan, R.*, Sun, Y. and Liu, M., 2020. Applying surface normal information in
drivable area and road anomaly detection for ground mobile robots. IROS 2020. 56
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Intelligent Collaboration Among Air-Ground Robots
for Parking Violation Detection

1. Suspicion Phase

Car Detection/Classification

e In 2020, we introduce a novel
suspect-and-investigate
framework [10], which can be
easily embedded in a drone for
automated parking violation S i
detection (PVD). preiows

[10] Wang, H., Liu, Y., Huang, H., Pan, Y.,
Yu, W., Jiang, J., Lyu, D., Bocus, M.J.,
Liu, M., Pitas, I. and Fan, R., 2020. ATG-

Optical Flow £ q; Car Detection/Class

PVD: Ticketing parking violations on a g | Result I
drone. ECCV Workshop 2020.
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Intelligent Collaboration Among Air-Ground Robots
for Parking Violation Detection

1. Suspicion Phase

Our proposed framework consists
of: 1) SwiftFlow, an efficient and
accurate convolutional neural
network for unsupervised optical
flow estimation; 2) Flow-RCNN, a B ——
flow-guided CNN for car detection |[au—
and classification; and 3) an
llegally parked car (IPC) candidate
mvestigation module developed
based on visual SLAM.

Car Detection/Classification

Flow-RCNN |8

Optical Flow £ q; Car D-atecliun!(?ias
Result D,
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UCSan Diego

Intelligent Collaboration Among Air-Ground Robots

for Parking Violation Detection

@& ATG-PVD: Ticketing Parking Violations on A Drone

Hengli Wang!*, Yuxuan Liu'*, Huaiyang Huang!*, Yuheng Pan?*, Wenbin Yu?, Jialin Jiang?,
Dianbin Lyu?, Mohammud J. Bocus?, Ming Liu!, Ioannis Pitas*, and Rui Fan?>
I'HKUST Robotics Institute
2 ATG Robotics
3 University of Bristol

4 Aristotle University of Thessaloniki
3> UC San Diego

B EBREAA f = : : / ARISTOTLE
s THE HONG KONG = UCSan Diego
LlAJJ UNIVERSITY OF SCIENCE — s
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Lane Marking Detection

« In 2016, we developed a stereo vision-based
multiple lane marking detection algorithm [9].

* This algorithm can estimate multiple dense
vanishing points from disparity maps acquired
using a stereo camera.

* By optimizing two accumulators with respect to
the horizontal and vertical coordinates of the
vanishing points using dynamic programming
(DP), we can obtain a vanishing point model
(VPM). The lane markings can then be detected
using the information of VPM.

[9] Ozgunalp, U., Fan, R., Ai, X. and Dahnoun, N., 2016. Multiple lane detection algorithm

based on novel dense vanishing point estimation. IEEE Trans on Intelligent Transportation
Systems, 18(3), pp.621-632. 61
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Keynote Talk Outline

1. Introduction

2, 3D Geometry Model Reconstruction

3. Semantic Driving Scene Understanding
4. Object Detection/Recognition

5. Conclusion
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Conclusion

« Recent Al technologies, such as deep learning, have greatly enhanced
machine vision algorithms for driving scene understanding.

e The combination of CNNs and traditional computer vision algorithms
provides a feasible solution to un/self-supervised driving scene
understanding, as labeled training data are no longer required.

« With better driving scene understanding outputs, obtained by data-
driven autonomous car perception techniques, other subsystems, such as
location & mapping, navigation, and path planning, can also be
significantly improved.
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